Hidden Harmony - Geometric Fantasies
Publisher,Springer Nature
Publication Date,
Format, Hardcover
Weight, 1338.1 g
No. of Pages, 848
Hidden Harmony Geometric Fantasies describes the history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject - Cauchy, Riemann, and Weierstrass - it looks at the contributions of great mathematicians from d'Alembertto Poincarâe, and Laplace to Weyl. Select chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function theory in several variables. Unique emphasis has been placed on the creation of a textbook tradition in complex analysis by considering some seventy textbooks in nine different languages. This book is not a mere sequence of disembodied results and theories, but offers a comprehensivepicture of the broad cultural and social context in which the main players lived and worked by paying attention to the rise of mathematical schools and of contrasting national traditions. This work is unrivaled for its breadth and depth, both in the coretheory and its implications for other fields of mathematics. It is a major resource for professional mathematicians as well as advanced undergraduate and graduate students and anyone studying complex function theory.--