High-k Gate Dielectric Materials

Checking local availability
RM1,237.21
Product Details

Publisher,Apple Academic Pr Inc
Publication Date,
Format, Hardcover
Weight, 612.35 g
No. of Pages, 245

This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components (or Moore's law). This book presents a broad review of SiO2 materials, including a brief historical note of Moore's law, followed by reliability issues of the SiO2 based MOS transistor. Then it discusses the transition of gate dielectrics with an EOT 1 nm and a selection of high-k materials. A review of the different deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working, structure, and modeling. This timely volume addresses the challenges of high-k gate dielectric materials and will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology. Key features: Discusses the state-of-the-art in high-k gate dielectric research for MOSFET in the nanoelectronics regime Reviews high-k applications in advanced MOS transistor structures Considers CMOS IC fabrication with high-k gate dielectric materials--

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)